The U reaches 71% renewable energy

By University of Utah Communications
Originally published in @theU

University of Utah Facilities Management has taken another important step forward as a leader in energy and sustainability by signing a 25-year solar energy contract with the Castle Solar Project near Huntington, Utah. The contract will deliver 20 MW of solar energy to campus over its lifespan, powering the university toward its commitment to carbon neutrality by 2050.

A geothermal energy contract signed in 2018 made the U the first public college in the state to receive more than half of its electricity through renewable sources. The new solar contract will bring the university to 71% of all electrical energy coming from renewable sources.

Upon delivery, this new contract would rank total renewables of the University of Utah at number five among all colleges and universities (behind University of California, Arizona State University, Columbia University, and University at Buffalo SUNY) as reported by the EPA’s Green Power Partnership. The U’s current geothermal contract is currently ranked as the number one largest long-term contract of any college or university under the Green Power Partnership.

This commitment to clean energy and sustainable investments persists even amidst current budget concerns surrounding the COVID-19 pandemic. Cost projections show this significant move toward renewable energy will come without increased costs. This will allow the U to be responsible stewards of resources without creating an unnecessary burden. Leadership teams in Facilities Management spent years working to balance those considerations.

Even the most perfect buildings and transportation systems, operated flawlessly, still need energy to run,” said Chris Benson, associate director of Sustainability and Energy in Facilities Management at the U. “We simply can’t be carbon neutral without sourcing our energy from clean and renewable sources. Off-site production is a great way to build and leverage economies of scale. With a combination of geothermal (our baseload) and solar (for peaking), loads are well-matched and costs remain well-managed.”

To operate nearly 300 buildings that support healthcare, research, education and housing, the university requires about 1% of all electricity and natural gas in the state of Utah. With long-term commitments to increase use of new, renewable energy, the U is significantly reducing the environmental impact of the electrical grid. This makes a measurable reduction to local emissions and improves air quality.

“We want to demonstrate what is possible by leading with sustainable choices in our operations,” said Kerry Case, chief sustainability officer at the University of Utah. “We recently launched an effort to identify additional strategies that will reduce the U’s greenhouse gas emissions and increase our community’s resilience to climate change. While we complete this important planning work, we must also take actions like this solar contract that have measurable impact.”

The solar energy contract has additional ties to the local environment and economy. It will utilize School and Institutional Trust Lands Administration (SITLA) land in Utah, which has been set aside to support public schools and institutions. The use of SITLA land will return some funds to the state of Utah through the lease agreement.

A new precedence has been set through the use of Rocky Mountain Power’s Schedule 32 rate tariff for the power purchase agreements between the U, Rocky Mountain Power, and each renewable energy supplier. This innovative approach allows large energy customers in Utah to choose their energy source; with the U leading the way, other large energy users in the community are now preparing to utilize this same structure.

“Rocky Mountain Power is proud to help the University of Utah meet its renewable energy goals with a project that will create jobs and tax revenue for rural Utah,” said Gary Hoogeveen, president and CEO of Rocky Mountain Power. “This project is a great example of innovative partnership with our customers to deliver a great result for both the university and communities supporting the renewable energy transition.”

The solar contract was originally awarded to Enyo Renewable Energy (ERE), a Utah-based wind and solar development company. ERE sold the project to D. E. Shaw Renewable Investments (DESRI), a leading national renewable energy developer-owner-operator. The solar energy project will be built by DESRI in Emery County and is expected to start delivering power mid-2022.

“Our team is pleased to partner with the University of Utah as it becomes a leader among universities across the country in providing cost-effective renewable power to its campuses,” said Hy Martin, chief development officer of DESRI. “With this solar power project, the university is driving the clean energy economy in Utah forward through investment in local communities.”

“MAP and Enyo formed Enyo Renewable Energy to create renewable energy projects that will lead the transformation of the Utah energy landscape by providing consumers with the local renewable energy sources they increasingly demand while providing substantial economic benefits to communities throughout the region,” said Christine Mikell, founder and CEO of Enyo. “We are delighted to have worked closely with Emery County, the state of Utah and regional stakeholders to ensure that the Castle Solar Project would be a success for all involved.”

This innovative contract was made possible with the legal expertise and hard work of the University of Utah General Counsel, the law firm of Gary, Dodge, Russell & Stephens, P.C. and Rocky Mountain Power’s renewable energy team.

Photo: DESRI’s Hunter Solar site in Emery County, Utah. By Jacqueline Flores/Swinerton Renewable Energy

Nitty Gritty H2O

Bill Johnson, professor in Geology & Geophysics and director of the William P. Johnson Contaminant Transport Group, is a GCSC faculty affiliate conducting research related to water. Bill came to the UU in 1995. As a hydrogeochemist, he researches transport and cycling – the fate and transport of things in water. In this installment of our regular research spotlight series, Bill answers our questions about his research, his role as an expert witness in a court case, and his pedagogy.

When you say “transport of things in water”, what kind of things are you talking about?

I focus on contaminants such as trace elements of all different kinds, like selenium or mercury, and theories to predict how long it will take for them to get from point A to point B or how much of the element will get from point A to point B. (The theories and the behaviors are different depending on the kind of contaminant.) I also do a lot of work on particles and understanding how to improve theories for transport of pathogens. My research program is split between these two areas; where half of it is about how particles transport and improving theory to predict that, and the other half is about trace elements in systems predominantly in Utah, but also a little international stuff, such as in Ecuador.

Can you say a bit more about the particles portion? What’s an example of a kind of particle that you study?

Every so often there are disease outbreaks in communities from organisms like cryptosporidium. A vast majority of these disease outbreaks come from groundwater and are typically associated with heavy rain. There’s a number of reasons why heavy rainfall would drive the transport of pathogens in the subsurface. We can make these predictions under particular conditions where we have control over the chemistry, and that’s what we do in water treatment plants where we use granular filtration to remove pathogens. The problem is that in the environment we don’t have control over the chemistry so the existing theories fail.

Beyond how far these particles are going to be transported during a heavy rain, what are other areas where these theories might be applicable?

Yes, heavy rain is just one example of why we care about pathogens in groundwater. There are lots of other contexts and practical engineered processes where having a guiding theory would help in design. For example, there are contaminated sites that are still a major challenge for clean-up. People are using nanosized zero valent iron to clean up different organic contaminates and reductively dechlorinate them. They’re using activated carbon particles injected into the groundwater to enhance attenuation and biodegradation of organic contaminants. And these practices have no design theory for how fast the particles should be pumped to optimize transport. So you have consultants doing this work without any useful tools to guide them on how best to do it. Having a theory to guide in these and other areas is valuable for doing these processes efficiently.

In another vein of your research, you were involved in a case against the proposed tar sands mine on the Tavaputs Plateau, battling against the U.S. Oil Sands company. What’s happened with that?

It’s idle! Between now and then, oil and gas prices crashed, so nobody’s trying to develop the site right now.

What aspect of your research did your work on that project fall under and how did you get involved?

It’s about the molecules and contaminant partitioning, exploring how organic contaminants behave in the environment. U.S. Oil Sands was using organic solvents to extract hydrocarbons from the ground and they were granted a permit by the State of Utah to dispose of those onsite with no liners and no monitoring. Western Resource Advocates asked me to weigh in on whether the solvent they were using was toxic. That solvent is called d-Limonene. It’s a citrus extract. In itself, it’s not all that toxic, at least at reasonably expected concentrations in groundwater. The hydrocarbons that U.S. Oil Sands were extracting from the tar sands with that solvent are more toxic than the solvent. They’ve been there for eons and the reason they’ve been there for eons – the tar sands in all the rocks – is that they don’t dissolve into water readily. But when you add this solvent to them and then leave this mixture of solvent and nitrogen compounds laying on the land surface, now you’ve made these compounds much more soluble. And I showed that that’s the problem. I did all these detailed thermodynamic calculations so that the expert witness for U.S. Oil Sands and I were battling over the thermodynamics of it all and our respective calculations, and the judge on the case punted. She just said “well, there’s no water at the site anyway”, which was a claim made by the State. And I thought it was over.

How did you get move from working on this issue of toxicity to addressing the overall hydrology of the area?

I thought it was over and then one of the leaders of the citizen action group called Living Rivers invited me to visit the site. I felt like I owed it to the process to actually see the area since I hadn’t seen it. And in fact, what’s so weird about that court case is I don’t think anybody who’d been arguing that court case had been to the site. U.S. Oil Sands was pointing to documents about the site made in the 1960s and 1970s that weren’t developed to address the hydrology of this specific place they were talking about. There are documents to address the whole region, and these regional-scale documents said there was no local water at the site. The whole court case rested on statements made in documents that clearly weren’t expressing scales appropriate to the problems at hand. So I went to the site and I was astounded.

It was lush. You get off the top of that plateau where it is dry and scraggily, and get down into the canyons adjacent and they have springs feeding these wonderful meadows that the local ranchers depend on. These ranchers steward the land down there and they depend on these springs for their own water as well as the livestock and the wildlife. Then I got mad because the State’s saying there’s no water and there’s no mention of the interest of the ranchers in these locations. It was just amazing to me. That’s when I started working for free and developed a research project out of it.

We put together a bunch of money to do an analysis and I pulled in some colleagues to help and a mixture of graduate and undergraduate students – a community effort. We ended up publishing a paper showing that the water in these springs comes from the ridges where U.S. Oil Sands was dumping this material. So you can’t rule out an impact. And I couldn’t say that there would definitely be an impact, nobody knows, but I could say there’s no way you can rule it out based on the data. And that was the argument I made. It ended up being a really fun thing to work on because we learned something interesting. It all culminated in a hearing that I thought was just going to be me and a lawyer and a Division of Oil Gas and Mining chief, and instead there were 100-200 expert people there, a mixture of activists, reporters, and so on. It was really interesting because the State kept making these statements about the area that were just flatly untrue and I was able to knock it down and the Chief of the Division of Oil Gas and Mining recognized that. He saw the data that we’d collected refuted what the State was saying. Then they required a monitor for the site. So that was a pretty satisfying outcome for that little project.

What was it like for your students to work on something that was so applied and urgent?

I think they really enjoyed that. I think they find it a satisfying extension of the nitty gritty, puzzle-solving research that we do.

What’s happening for you and your group right now related to the ‘nitty gritty’ stuff?

I just had a breakthrough on the particle transport theory. Existing theories for predicting the transport of particles fail because in the environment, the particles tend to be similarly charged, negatively, and so is the sediment. When things are charged the same way they repel each other. Basically, the theory fails because of that repulsion – particles and sediment shouldn’t attach, but yet they do and the particles get removed from the water. What it comes down to is that no surface is homogenous. There’s nanoscale heterogeneity that provides little zones where things are attracted and attach. What we’ve been doing for the past two years is backing up what that nanoscale heterogeneity should look like on surfaces through doing a bunch of attachment experiments. And that’s very puzzle solve-y. It’s something that when I was a master’s student working on the Himalayas in Pakistan, if you’d asked me what I was going to work on later in my life, I would have said you were crazy. But I love it because you have control over the system and we’re basically decorating Easter eggs with little heterogeneity dots on these little sand grains in our hypothetical models in our simulation trying to capture the data. We’ve been able to do that and now we’ve found that that representation predicts all these weird transport behaviors that you see under environmental conditions. We just submitted the manuscript.

We haven’t gotten it accepted yet, but I’m excited about it because it actually brings together this research that we’ve been doing for 15 years. I love the mix — I love this stuff where you really get into the mechanisms and I love the stuff where you get out in the field and measure things. So it’s really fun to have those aspects of my research program operating all at the same time. It’s good for the students because they all mix with each other. I get a critical mass of students going and they’re all teaching each other too, and that brings a lot of energy to the group.

What drew you to the GCSC?

I like to think I helped to make it. Before the GCSC existed, I was bringing together groups from Geology & Geophysics, Atmospheric Sciences, ecological people, Biology, environmental engineers, and the geographers. This was back probably in 1997, something like that, maybe 2000. I was bringing them together to say ‘hey, we should be developing work towards a big proposal.” Jim Ehleringer [GCSC director emeritus] was a part of that and some other people who helped lead included Craig Forster. This was before Brenda Bowen was even a grad student. We actually developed a precursor to GCSC called CWECS, the Center for Water and Ecosystem Climate… something or other, I can’t remember. But the point is, I was barely tenured at that point and didn’t really have a grand vision for the kind of thing that would become, like Jim Ehleringer did. So I dissolved CWECS and he developed GCSC. And what I focused on was developing work on the Great Salt Lake, because none was going on at that time from the University of Utah. That’s what I focused my efforts on while Jim Ehleringer built the GCSC, but I still feel like I had a hand in creating it.

How do you feel that GCSC support or programming has positively impacted your research or your teaching?

I can tell you that the Tar Sands work wouldn’t have happened without Logan Fredrick being a GCSC Fellow. She helped with the logistics of getting the field sampling done in a big way. Out of that fellowship, we had multiple papers. Obviously there was other support brought in to help with all that, but the GCSC was a critical piece. I think that’s a fundamentally important aspect of the GCSC — funding students to allow them to explore something that maybe isn’t so formulaic. You can explore a bit. And I really value that a lot.

Thank you, Bill!

Seed grants grow collaboration.

By Liz Ivkovich, Global Change & Sustainability Center, originally published on April 9, 2018.

Water uptake in plants, the neurocognitive underpinnings of certain personality traits and food as a cultural process. How are these starkly different areas connected?

Each topic relates to environmental change. And each topic is the thrust of a new interdisciplinary research collaboration. These projects and six others have received funding through the Global Change & Sustainability Center (GCSC) and the Society, Water, & Climate Research Group’s (SWC) new seed grant initiative.

“The GCSC is thrilled that we were able to partner with SWC to support interdisciplinary faculty seed grants to help catalyze new collaborations between U faculty from different disciplines as they pursue sustainability research,” said Brenda Bowen, director of the center. “These grants were specifically targeted to help bring new faculty into existing interdisciplinary projects and to facilitate new research that will lead to future external funding opportunities.”

In total, $132,000 in grant funds has been awarded to nine different collaborations.

Funded projects include research being pursued by faculty from anthropology, atmospheric sciences, biology, cognition and neural science, environmental and sustainability studies, environmental humanities, family and consumer studies, geography, geology and geophysics, law, neuroradiology, pediatrics, psychology and sociology.

Here are three examples of funded research:

  • For the project, “Leveraging the Wasatch Environmental Observatory to Improve Prediction of Western U.S. Forest Carbon and Water Cycling,” investigators will gather data about how plants take in water and use it to build better models for predicting how Intermountain forests will change in the future.Utah’s mountain forests provide highly valuable ecosystem goods and services to local communities, including timber, tourism and recreation, water purification, and carbon sequestration. These forests fundamentally affect carbon and water cycling, thus influencing water resources upon which Utah’s communities and economy rely. Climate change is projected to increase stress on mountain forests through more frequent and severe droughts, more and larger wildfires and other disturbances like insect outbreaks. The complicated scale of these changes requires new kinds of models that can predict the future of U.S. forests.One fundamental data gap currently limits researchers’ ability to develop rigorous models for ecosystems in the Wasatch Mountains. Data required to model drought stress in mountainous forests, such as the plant traits that comprise water transport via xylem, are not yet available. Through this funding, the team will be able to begin collecting these data.Researchers on this project include William Anderegg, biology; Paul Brooks, geology and geophysics; John Lin, atmospheric sciences; and David Bowling, biology.

 

  • In a project entitled “Individual Differences in Environmental Attitudes and Behavior: Examination of Personality, Neurocognitive Mechanisms, and Malleability,” faculty investigators will explore the neurocognitive underpinnings of the personality trait “openness to experience.” Openness to Experience — the breadth, depth and permeability of consciousness, and the recurrent need to enlarge and engage experience — is the personality factor most consistently associated with pro-environmental attitudes and behaviors. Behaviors associated with this trait include reducing emissions to address climate change, belief in human behavior-driven climate change and a sense of connection to humanity and nature.There has been scant research examining the neurocognitive mechanisms underlying pro-environmental attitudes and behavior. Understanding this personality trait may inform how programs and policies can be tailored to create social change in environmental attitudes and behavior. The team will also examine the extent to which environmental attitudes and behaviors can be changed through exposure to nature/aesthetic experiences.Faculty investigators on this project are Paula Williams, psychology; Jeff Anderson, neuroradiology; Jeanine Stefanucci, cognition and neural science; Yana Suchy, neuropsychology; David Strayer, cognition and neural science.

 

  • The project, “Exploring Indigenous Lifestyles for Justice, Sustainability, and Health: Native Food Knowledge and Practice,” will explore the livelihoods of Great-Basin Shoshone tribal members and evaluate whether participation in traditional diets and land management and use of native language are correlated with positive health outcomes. With the loss of indigenous languages comes the loss of traditional cultural practices. This project is unique in that while much traditional knowledge has disappeared with the loss of language, the traditional knowledge of the Shoshone community partners exists in untranslated ethnographic data in the University of Utah’s possession. While many health interventions in local indigenous communities are based in Westernized approaches to health, including a focus on exercise and nutrient consumption, this research team, including tribal partners, share the perspective that food and health are cultural processes and products. They are committed to working toward increased food sovereignty — the right of peoples to healthy and culturally appropriate food produced through ecologically sound and sustainable methods, and their right to define their own food and agriculture systems.Researchers on this project include Adrienne Cachelin, environmental and sustainability studies; Brian Codding, anthropology; Lillian Tom-Orme, epidemiology; and Marianna Di Paolo, anthropology

“These kinds of interdisciplinary research endeavors are crucial to addressing today’s urgent social and environmental challenges,” said Andrea Brunelle, chair of the Society, Water, & Climate Research Group executive committee. “The diverse range of projects supported by the seed grants is a testament to the importance of multiple perspectives on climate, society and water. The work doesn’t stop with these grants. Through other ongoing collaborations between GCSC and SWC, as well as with partners such as Red Butte Garden, we will continue to support this relevant research.”

The seed grants were awarded through a competitive interdisciplinary peer-review process that considered impact of the research in terms of new publications and future external grant funding. Funding for some projects was supplemented with financial support from Red Butte Garden specifically aimed at supporting student and postdoctoral research linked to plants.

Melding Perspectives, Finding Solutions

In Utah, the second driest state in the country, water is a critical issue. Our water systems are interconnected with human systems, and as our population expands and the climate changes, protecting and sharing this resource equitably will require collaboration between researchers, practitioners and decision makers.

When it comes to collaborative water research, the U’s Society, Water, and Climate Research Group (SWC) is leading the way. With the addition of five new faculty members, the group has undertaken an ambitious mandate – to meld multiple scientific perspectives toward finding sustainable water solutions for a changing world.

Ruth Watkins, senior vice president for Academic Affairs and incoming president, addresses faculty at the forum.

Many U faculty already had significant expertise related to water, society and climate, but there were areas that could be strengthened. A group of U researchers, led by the chair of the U’s Geography Department Andrea Brunelle, formed the SWC in 2013.

The team’s first task was to articulate gaps in the society, water and climate perspectives already at the U. Then they proposed new faculty positions to fill those gaps through the university’s Transformative Excellence Program. The Transformative Excellence Program is an ongoing hiring initiative seeking new faculty focused around interdisciplinary themes rather than discipline.

“If we are to truly address Utah’s – and the nation’s – societal issues, we must think beyond our traditional approaches,” said Senior Vice President for Academic Affairs Ruth Watkins, who is also the incoming present of the U. “The Transformative Excellence Program was designed to identify areas within the university where focusing on strategic additions to our faculty could enhance our preeminence and allow us to better serve the citizens of this state and country.”

Ten departments – Anthropology, Atmospheric Sciences, Biology, Economics, Environmental & Sustainability Studies, Geography, Geology & Geophysics, Political Science, Psychology, and Sociology – invested in this unique hiring process, an unprecedented level of interdepartmental collaboration.

“This hiring process was very inspiring and rewarding,” said Brunelle. “Working with a group of faculty who obviously care so much about these topics and this research that they would invest an absolutely tremendous amount of time working on these searches even without a guarantee of a departmental hire was incredible. Even after the hires were completed, all the departments are represented on the SWC executive committee, showing continued investment in this collaborative endeavor.”

As the Chronicle of Higher Education points out, this kind of cluster-hiring can be a fraught endeavor. It is challenging to ensure the process doesn’t unravel in the context of disciplinary hiring needs.

At the U, the SWC hiring process fit in with the university’s ethos of interdisciplinary collaboration.

Several years earlier, in 2011, the U underwent a similar hiring process for a small group of faculty who would work at the fringes of their discipline on climate- and environmental change-related research. This initial search ultimately brought Diane Pataki (Biology), Gabe Bowen (Geology & Geophysics) and John Lin (Atmospheric Sciences) to the U. This first group hire, which laid the groundwork for the Transformative Excellence Program, happened through the dedicated efforts of faculty in the Global Change & Sustainability Center (GCSC), which was led at the time by director emeritus Jim Ehleringer.

Audience members at the forum gather for panel presentation from (L to R) Amy Wildermuth, chief sustainability officer; Steve Burian, director of the U Water Center; Andrea Brunelle, co-chair of the Society, Water, & Climate Research Group; and Brenda Bowen, director of the Global Change & Sustainability Center.

The GCSC is a web of 140 faculty members in 10 colleges who all work within environmental and sustainability themes. The center facilitates faculty connections and interdisciplinary grants, offers graduate fellowships and research funds and manages a sustainability-related graduate certificate. In addition, the GCSC also has a series of ongoing and one-time events aimed at bringing the interdisciplinary community together in meaningful ways. All of these endeavors work to catalyze relevant research on global change and sustainability at the U.

“The investment the administration put into the GCSC really set a tone for the value that collaborative work has on this campus and that translated beautifully to the SWC project,” Brunelle said. “A great example of this is the generous contributions of time, resources and support that my Dean, Cindy Berg, provided throughout the multi-year hiring process.”

To build the SWC research group, broad descriptions of new faculty positions were posted online. The response was immediate and overwhelming. In the first year of the search, 13 candidates were brought to campus, offering fascinating talks about climate change and impacts on water and society.

After several years of intensive searches and interviews, the group is now complete with five new faculty in four departments. These five faculty bring nationally renowned research to the university while seamlessly integrating into their departmental homes.

“The Society, Water and Climate initiative has really helped to integrate GCSC scholars from across campus around a common set of questions and problems that require scholars to come together in new ways,” said Brenda Bowen, director of the GCSC. “The SWC focus has helped us to recognize and identify common research interests between seemingly separate fields and is creating opportunities for faculty and students to advance their work in new directions. The incoming SWC faculty are interdisciplinary leaders and are already catalyzing and supporting projects and grant proposals that move all of us forward as we work towards a future where humans and ecosystems thrive.”

Meet SWC hires. These members will join existing faculty who are part of the group.

William Anderegg, Biology, 2016

William Anderegg is an assistant professor in the Department of Biology at the University of Utah. His lab studies how drought and climate change affect forest ecosystems, including tree physiology, species interactions, carbon cycling and biosphere-atmosphere feedbacks. This research spans a broad array of spatial scales, from cells to ecosystems, and seeks to gain a better mechanistic understanding of how climate change will affect forests and societies around the world.

Juliet Carlisle, Political Science, arriving in 2018                                                                         

Juliet Carlisle is an associate professor in the Department of Political Science. Her research substantively deals with political behavior and public opinion with an emphasis on environmental politics and policy. In particular, Carlisle has investigated issues surrounding environmental concern, including what people know about the environment, where that knowledge originates and how that knowledge influences their opinions and behaviors. Her co-authored book, “The Politics of Energy Crises” (2017), applies policy theories to energy crises and explores energy policy during energy crises with specific attention on the role of public opinion, business interests and environmental activists.

Gannet Hallar, Atmospheric Sciences, 2016

Gannet Hallar is an associate professor in the Department of Atmospheric Science at the University of Utah and the director of Storm Peak Laboratory in Steamboat Springs, Colorado, operated by the Desert Research Institute. Her research focuses on using high-quality measurements of trace gases, aerosol physical and chemical properties and cloud microphysics to understand connections between the biosphere, atmosphere and climate, along with the impact of anthropogenic emissions on these connections.

Summer Rupper, Geography, 2015

Summer Rupper is an associate professor in the Geography Department at the University of Utah. Her research focuses on glaciers and ice sheets as recorders and indicators of climate change and as freshwater resources. Recent and ongoing projects include quantifying glacier contributions to water resources and sea-level rise, assessing glacier sensitivity to climate change and reconstructing past climate using ice core snow accumulation data and geomorphic evidence of past glacier extents. These projects are all part of a larger effort to characterize climate variability and change and the impacts of these on society.

S. McKenzie Skiles, Geography, 2017

McKenzie Skiles is an assistant professor in the Department of Geography at the University of Utah. She is an alpine and snow hydrologist whose research interests center on snow energy balance, remote sensing of mountain snow and ice and cryosphere-climate interaction. Her research methods combine numerical modeling, laboratory analysis, and field, in situ, and remotely sensed observations to better constrain the timing and magnitude of mountain snowmelt and to improve our understanding of how accelerated mountain snowmelt is impacting this critical natural reservoir over time.

The SWC is one of 10 Transformative Excellence cluster hiring initiatives currently in place at the U. Current projects include families and health research; society, water and climate; statistical science and big data; digital humanities; biophysics; sustaining biodiversity; health economics and health policy; resilient spaces (aging); science and math education; and neuroscience.

Banner image: Members of the SWC chat at the November 2017 Water Forum, the inaugural event for the Society, Water & Climate Research Group, organized by the SWC, the Global Change & Sustainability Center, and U Water Center.